Testing general relativity on accelerators

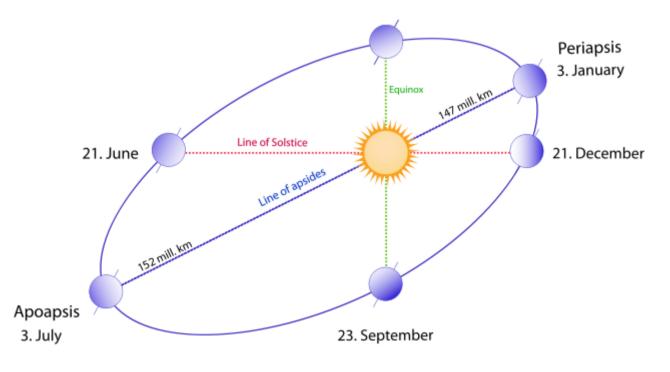
Tigran Kalaydzhyan

1507.xxxxx: Gravitational mass of positron from LEP synchrotron losses

1506.08063: Gravitational mass of relativistic matter

and antimatter

1506.01963: Testing general relativity on accelerators



Motivation

- Tests of gravity at high energies
- Antimatter gravity

How?

Perform tests on the isotropic Lorentz violation at two different days of the year.

Theory in brief

Gravitational field around the accelerator:

$$ds^{2} = \mathcal{H}^{2}dt^{2} - \mathcal{H}^{-2}(dx^{2} + dy^{2} + dz^{2})$$

where
$$\mathcal{H}^2 = 1 + 2\Phi$$

For a massive particle (in our case ultrarelativistic electron or positron)

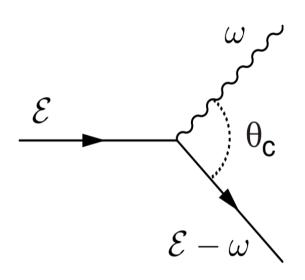
$$\Phi_m = \Phi \, \frac{m_{e,g}}{m_e} \,,$$

$$\mathcal{H}_m^2 \equiv 1 + 2\Phi_m$$

which will modify the dispersion relation of the particle and the relation between energy and mass (we assume the speed of light to be universal)

$$\mathbf{p}^2 = (1 - 2\kappa) \left(\mathcal{E}^2 - m_e^2 \right),$$

$$\mathbf{p}^{2} = (1 - 2\kappa) \left(\mathcal{E}^{2} - m_{e}^{2}\right), \qquad \mathcal{E} = \frac{m_{e}\mathcal{H}^{-1}\mathcal{H}_{m}}{\sqrt{1 - \mathcal{H}^{4}\mathcal{H}_{m}^{-4}\mathbf{v}^{2}}}$$


where $\kappa = 2\Phi \Delta m_e/m_e$, $\Delta m_e = m_{e,q} - m_e$.

Imagine, for two experiments

$$|\kappa|<\kappa_{1,2}=2\Phi_{1,2}rac{\Delta m_e}{m_e}$$
 then $\left|rac{\Delta m_e}{m_e}
ight|<rac{\kappa_1+\kappa_2}{2\Delta\Phi}$

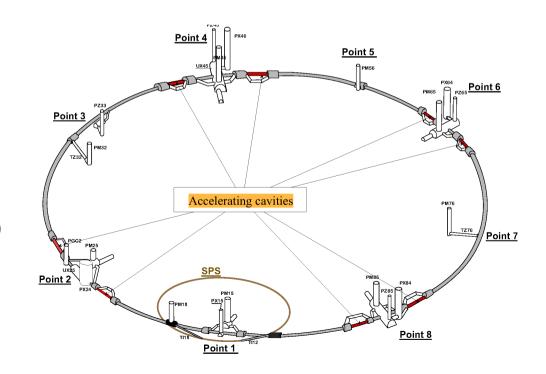
$$\left| \frac{\Delta m_e}{m_e} \right| < \frac{\kappa_1 + \kappa_2}{2\Delta \Phi}$$

1. Vacuum Cherenkov radiation

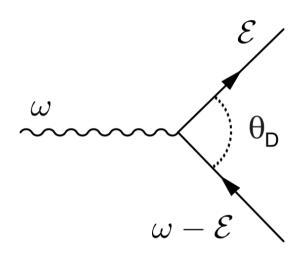
Threshold energy:

$$\mathcal{E}_{\rm th} = \frac{m_e}{\sqrt{-2\kappa}}$$

Emission rate:


$$\Gamma_C = \alpha \, m_e^2 \, \frac{(\mathcal{E} - \mathcal{E}_{\rm th})^2}{2\mathcal{E}^3}$$

Let us take E = 104.5 GeV electrons and positrons at LEP.


$$\mathcal{E}_{\rm th} = 100 \, {\rm GeV}$$

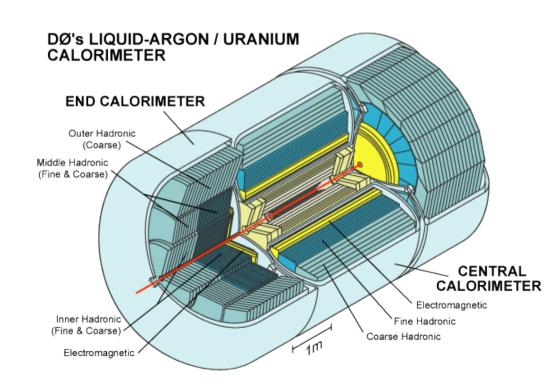
Compare: 1.2cm (decceleration distance) vs 6 km (approximate distance between accelerating RF systems).

$$\kappa > -1.3 \times 10^{-11}$$

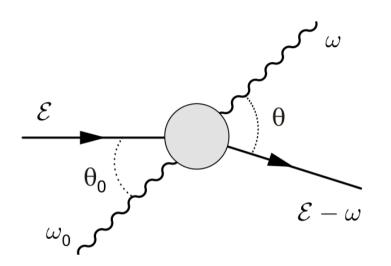
2. Photon decay

Threshold energy:

$$\omega_{\rm th} = \sqrt{\frac{2}{\kappa}} m_e$$

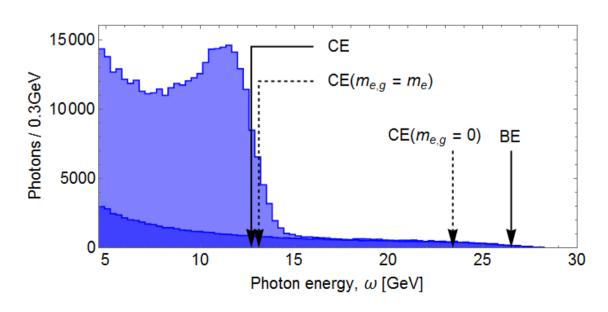

Decay rate:
$$\Gamma_D = \frac{2}{3} \alpha \, \omega \, \frac{m_e^2}{\omega_{\rm th}^2} \left(2 + \frac{\omega_{\rm th}^2}{\omega^2} \right) \sqrt{1 - \frac{\omega_{\rm th}^2}{\omega^2}}$$

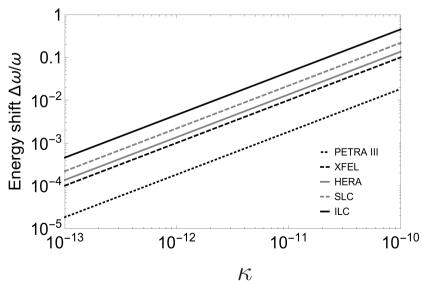
Let us take E = 340.5 GeV photons at Fermilab's Tevatron.


$$\omega_{\rm th} = 300 \, {\rm GeV}$$

Compare: 0.1 mm (decay distance) vs 78 cm (minimal path from interaction point to the central calorimeter of D0 detector).

$$\kappa < 5.8 \times 10^{-12}$$

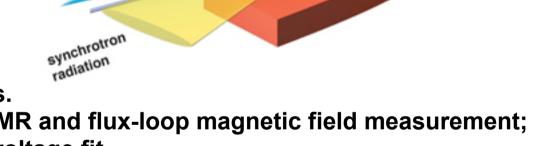

3. Compton scattering



Shift in the Compton edge:

$$\frac{\Delta\omega}{\omega_{max}} = \frac{4\mathcal{E}^2|\Phi|}{m_e^2(1+x)^2} \cdot \frac{\Delta m_e}{m_e}$$

where
$$x \equiv 4\mathcal{E}\omega_0 \sin^2{(\theta_0/2)}/m_e^2$$


4. Synchrotron radiation

Radiation power without gravity

$$P = \frac{2}{3} \frac{e^2 \dot{\mathbf{v}}^2}{c^3} \left(\frac{\mathcal{E}}{m_e}\right)^4$$

Modification of the gamma-factor leads to

$$\Delta P/P = 4\kappa \gamma^2$$

electron beam

LEP E = 80 GeV electrons and positrons.

Energy was estimated by 3 methods: NMR and flux-loop magnetic field measurement; spectrometry; synchrotron tune vs RF voltage fit.

$$Q_s^4 = \left(\frac{\alpha_c h}{2\pi}\right)^2 \left\{ \frac{g^2 e^2 V_{RF}^2}{E^2} + M g^4 V_{RF}^4 - \frac{U^2}{E^2} \right\}$$

One can reinterpret it as a fit to U and possible uncertainty in the synchrotron losses

$$|\kappa| < 9 imes 10^{-15}$$
 for two experiments (13 Aug & 15 Sep 1999)

Results

- Absence of vacuum Cherenkov radiation at LEP and photon stability at Tevatron give 4% limit on the difference between the gravitational and inertial masses of the electron/positron at GeV energies.
- Synchrotron radiation at LEP reduces it to 0.13%
- Compton scattering can provide a similar or better precision if performed at ILC/CLIC twice: when Earth is at the aphelion and perihelion of its orbit.

At the beginning of the 21st century, we are finally able to rule out antigravity and confirm weak equivalence principle for the high-energy matter and antimatter.