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Motivation

= No direct detection of the dark matter to date, while having an overwhelming
amount of indirect observations. Importance: 27% of energy content of the
Universe, 85% of the mass content.

= Vast range of unexplored masses (about 80%) of the total span 1024 eV - 1022 eV.
WIMPs are typically tested above GeV and axions above ueV scale.

= Light bosons predicted by nearly every new theory beyond the Standard Model.

= Specifically for the clock stability studies: able to show high-frequency signals and
make easier to identify different types of noise.
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Brief theory (dark matter)

Action of the theory and interaction Lagrangian:
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Presence of dark matter can induce a change in the fundamental constants:
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Clock response is due to the change in the atomic transition frequency:
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Example of an atomic clock (3/Sr@ JILA)
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Source: “An optical lattice clock with accuracy and stability at the 10712 [evel”,
B. J. Bloom at al., Nature 506, 71-75 (2014)



Brief theory (clocks)

Average fractional frequency deviation: Sigma Tau Diagrarm

¢ o | Wnite PN o(t) ~
5(t) — 1 Y dt’ y(t) — dw(t)/dt’ FIrkE:P S,(f) ~ f*
yt)=— [ y@) = o
T 2(t) = e1(t) _ pa(t) 1IN i
t—r 2wy 2TV log \\ E\rf
. . . Gy(‘C) . t-T \\ 94114
Allan variance (continuous version): ‘ N VWi FTicker TR T
N EM_LFM._ L EM._i AT
N /
1 ] T -15 =iy G 17y
2 . _ _ 2 T T
c°(7) = - llm — t+7) — t dt 0 2 4 6 8 10
2(r) = 5 dim_ . [ e+ ) = (0] -
0
W.J. Riley,
Regime of our interest: Oy (7-) — 0'0/\/? “Handbook of frequency stability analysis”
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General idea of the measurement

Compare two clocks assuming either of the two dark matter
configurations: dark matter waves or topological defects.

1. Waves with frequency 2. Clumps of dark matter of size

f=mg/(27) d ~ h/(mgc)

Images: Phys.org,
http://danielpalacios.info
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Anomalies in the stability plots
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Existing limits and projected n=1:
sensitivities for A, 1 (scalar waves)
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Projected sensitivities
for A\, 1 (topological defects)
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Existing limits and projected
sensitivities for A, 1 (scalar waves)
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Further directions

 Comparing mechanical clocks allows to test larger DM masses
(Bohr radius scales with a)

* One can study stochastic backgrounds of various fields
(including DM waves) by cross-correlating noises from
different atomic sensors: atomic clocks (scalar DM), atom
interferometers (vector DM).




Conclusions

e Comparison of ultra-stable atomic clocks provides an
opportunity for direct tests of light dark matter.

* Time domain analysis opens access to a new region of
parameter space for the DM masses and couplings.

* Existing data for Hg*/Al* comparison puts new limits on the
DM coupling in the DM wave background.

 Networks of atomic sensors can be used for the search of
the stochastic backgrounds of new fields.
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