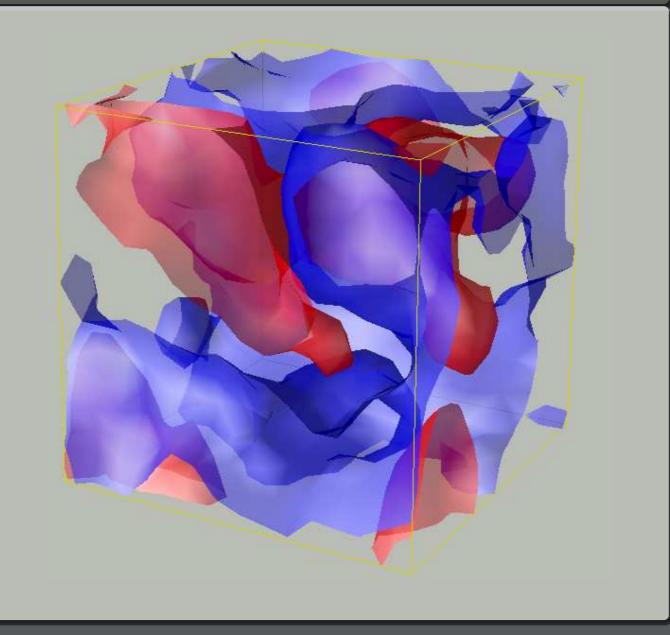
Chiral Superfluidity of the Quark-Gluon Plasma

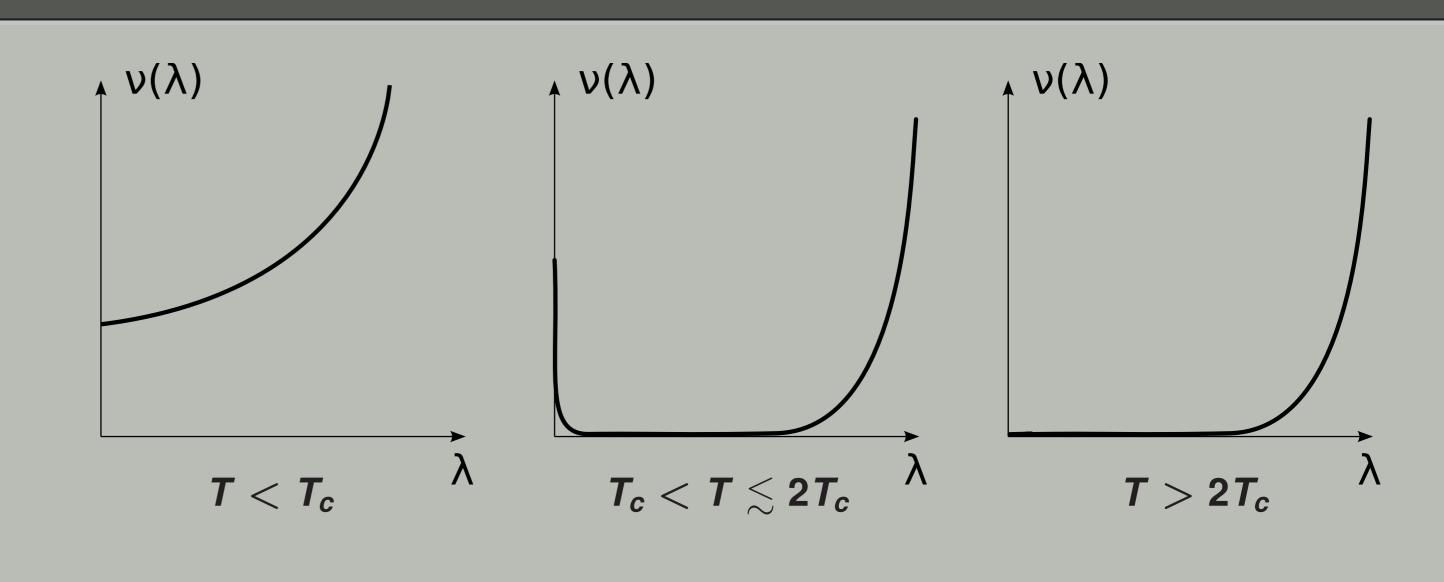
Tigran Kalaydzhyan^{1,2}, Henry Verschelde³ and Valentin I. Zakharov^{2,4} ¹DESY-Hamburg, ²ITEP-Moscow, ³Ghent University, ⁴MPI-Munich

Motivation

- Irregular structure of the QCD vacuum
- Fractal distribution of the topological charge density Iow-dimensional defects
- Effective model for sQGP
- effective Lagrangian two-component fluid
- Predictions for RHIC and LHC



Fermionic spectrum at finite temperature



there are two separated parts of

Bosonization with a finite cut-off

Euclidean functional integral for $SU(N_c) \times U_{em}(1)$ is given by

$$\int D\bar{\psi}D\psi \exp\left\{-\int_{V} d^{4}x \,\bar{\psi}(\not D-im)\psi+\frac{1}{4}G^{a\mu\nu}G^{a}_{\mu\nu}+\frac{1}{4}F^{\mu\nu}F_{\mu\nu}\right\},$$

where we define the Dirac operator as

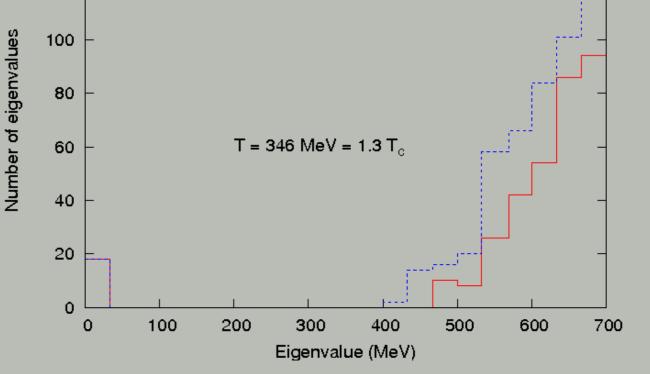
 $\mathbf{D} = -i(\mathbf{\partial} + \mathbf{A} + g\mathbf{G} + \gamma_5\mathbf{A}_5)$

- \blacktriangleright integrate out quarks below a cut-off Dirac eigenvalue Λ add gauge-invariant terms to the Lagrangian to match the chiral anomaly
- consider a pure gauge $A_{5\mu} = \partial_{\mu}\theta$ for the auxiliary axial field \blacktriangleright and the chiral limit $m \rightarrow 0$

The total effective Euclidean Lagrangian reads as

$$\mathcal{L}_{E}^{(4)} = \frac{1}{4} G^{a\mu\nu} G^{a}_{\mu\nu} + \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - j^{\mu} A_{\mu} - g j^{a\mu} G^{a}_{\mu}$$
$$+ \frac{\Lambda^{2} N_{c}}{4\pi^{2}} \partial^{\mu} \theta \partial_{\mu} \theta + \frac{g^{2}}{16\pi^{2}} \theta G^{a\mu\nu} \widetilde{G}^{a}_{\mu\nu} + \frac{N_{c}}{8\pi^{2}} \theta F^{\mu\nu} \widetilde{F}_{\mu\nu}$$
$$+ \frac{N_{c}}{24\pi^{2}} \theta \Box^{2} \theta - \frac{N_{c}}{12\pi^{2}} \left(\partial^{\mu} \theta \partial_{\mu} \theta\right)^{2}$$

- the spectrum at intermediate temperatures!
- a strong external magnetic field does not destroy the picture all the chiral properties are described by the near zero modes



Hydrodynamic equations

Equations of motion for the quadratic effective Minkowski Lagrangian

$$\partial^{\mu}\partial_{\mu}\theta = rac{C}{4f^2}F^{\mu
u}\widetilde{F}_{\mu
u}, \ \partial_{\mu}F^{\mu
u} = -j^{
u} + C(\partial_{\sigma}\theta)\widetilde{F}^{\sigma
u} \ \partial_{\mu}\widetilde{F}^{\mu
u} = \mathbf{0},$$

(only color-singlets here, for a general description see 1208.0012) Varying the quadratic Lagrangian with respect to axial-vector $A_{5\mu} = \partial_{\mu}\theta$ we obtain the axial current $j_5^{\mu} = -f^2 \partial^{\mu}\theta$ (curl-free!). Conservation law $\partial_{\mu}(T^{\mu\nu} + \Theta^{\mu\nu}) = 0$ makes it possible to express divergency of the fluid energy-momentum tensor $T^{\mu\nu}$ via the one of the electromagnetic stress-energy tensor $\Theta^{\mu\nu} = F^{\mu\lambda}F^{\nu}{}_{\lambda} - \frac{1}{4}g^{\mu\nu}F_{\alpha\beta}F^{\alpha\beta}$. In summary, the hydrodynamic equations are $\partial_{\mu}T^{\mu\nu} = F^{\nu\lambda}(j_{\lambda} + CF_{\lambda\sigma}\partial^{\sigma}\theta) \equiv F^{\nu\lambda}(j_{\lambda} + j_{S\lambda}),$ $\partial_{\mu} j_{5}^{\mu} = -\frac{C}{4} F^{\mu\nu} \widetilde{F}_{\mu\nu}$ $\partial_{\mu} \boldsymbol{j}^{\mu} = \mathbf{0},$

So we get an axion-like field with decay constant $f = \frac{2N}{2} \sqrt{N_c}$ and a negligible mass $m_{\theta}^2 = \lim_{V \to \infty} \frac{\langle Q^2 \rangle}{f^2 V} \equiv \chi(T)/f^2$. We tend to interpret it as a quasiparticle moving along the low-dimensional defects!

Interpretation of the scale Λ

From the quartic Lagrangian at
$$N_c = N_f = 1$$
 we get
 $\rho_5 = \frac{1}{2} \left(\frac{\Lambda}{\pi}\right)^2 \mu_5 + \frac{1}{3\pi^2} \mu_5^3$

Free quarks (see 0808.3382): $\Lambda = \pi \sqrt{\frac{2}{3}} \sqrt{T^2 + \frac{\mu^2}{\pi^2}} \propto \rho_{sphaleron}^{-1}$

 $3\pi^2$

Free quarks and strong B-field: $\Lambda = 2\sqrt{|eB|}$

▶ Dynamical lattice fermions (1105.0385): $\Lambda \simeq 3 \, \text{GeV} \gg \Lambda_{QCD}$

Change in entropy and higher order gradient corrections

The terms $\tau^{\mu\nu}$, ν^{μ} and ν^{μ}_{5} denote higher-order gradient corrections and obey the Landau conditions

plus the Josephson equation $u^{\mu}\partial_{\mu}\theta + \mu_5 = 0$. Corresponding constitutive relations in gradient expansion are $T^{\mu\nu} = (\epsilon + P) u^{\mu} u^{\nu} + P g^{\mu\nu} + f^2 \partial^{\mu} \theta \partial^{\nu} \theta + \tau^{\mu\nu},$ $\mathbf{j}^{\mu} = \rho \mathbf{u}^{\mu} + \nu^{\mu},$ $\mathbf{j}_5^{\mu} = -\mathbf{f}^2 \partial^{\mu} \theta + \nu_5^{\mu}$

The stress-energy tensor $T^{\mu\nu}$ consists of two parts, an ordinary fluid component and a pseudoscalar "superfluid" component. This modifies the equation of state by adding to the r.h.s. a new θ -dependent term

$$dP = sdT +
ho d\mu - f^2 d \left[rac{1}{2} \partial^{\mu} \theta \ \partial_{\mu} \theta
ight],$$

where *s* is the entropy density.

Phenomenological output

$$u_{\mu} au^{\mu
u} = \mathbf{0}\,, \qquad u_{\mu}
u^{\mu} = \mathbf{0}\,, \qquad u_{\mu}
u^{\mu}_{5} = \mathbf{0}\,.$$

Using both hydrodynamic equations and constitutive relations one can derive

$$\partial_{\mu}(\boldsymbol{s}\boldsymbol{u}^{\mu}-\frac{\mu}{T}\nu^{\mu}-\frac{\mu_{5}}{T}\nu_{5}^{\mu})=-\frac{1}{T}(\partial_{\mu}\boldsymbol{u}_{\nu})\tau^{\mu\nu}-\nu^{\mu}(\partial_{\mu}\frac{\mu}{T}-\frac{1}{T}\boldsymbol{E}_{\mu})-\nu_{5}^{\mu}\partial_{\mu}\frac{\mu_{5}}{T}.$$

so the entropy production is always nonnegative. This fact tells us that we don't need to add any additional terms to the entropy current like in Son and Surowka (0906.5044)

- no additional first-order corrections to the currents.
- ▶ in absence of dissipative corrections we obtain $\partial_{\mu}(su^{\mu}) = 0$, i.e. only the "normal" component cotributes to the entropy current, while the "superfluid" component has zero entropy.

Electric and magnetic fields in the fluid rest frame are defined as

$$\boldsymbol{E}^{\mu} = \boldsymbol{F}^{\mu\nu}\boldsymbol{u}_{\nu}, \qquad \boldsymbol{B}^{\mu} = \tilde{\boldsymbol{F}}^{\mu\nu}\boldsymbol{u}_{\nu} \equiv \frac{\mathbf{I}}{2}\epsilon^{\mu\nu\alpha\beta}\boldsymbol{u}_{\nu}\boldsymbol{F}_{\alpha\beta}$$

An additional electric current, induced by θ -field

 $j_{\lambda}^{S} = CF_{\lambda\sigma}\partial^{\sigma}\theta = -C\mu_{5}B_{\lambda} + C\epsilon_{\lambda\alpha\sigma\beta}u^{\alpha}\partial_{\sigma}\theta E_{\beta} - u_{\lambda}(\partial\theta \cdot B)$

I term: Chiral Magnetic Effect (electric current along B-field) II term: Chiral Electric Effect (electric current transverse to) E-field and to both normal and superfluid velocities) III term: Chiral Dipole Wave (dipole moment induced by B-field) The field $\theta(\vec{x}, t)$ itself: Chiral Magnetic Wave (propagating) imbalance between the number of left- and right-handed quarks)

Corresponding e-mail: tigran.kalaydzhyan@desy.de